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Adaptive femtosecond control experiments are expanding the possibilities for using laser pulses as photophysical
and photochemical reagents. However, because of the large number of variables necessary to perform these
experiments (usually 100-200), it has proven difficult to elucidate the underlying control mechanisms from
the optimized pulse shapes. If adaptive control is to become a widespread tool for examining chemical dynamics,
methods must be developed that reveal latent control mechanisms. This manuscript presents a generally
applicable method for dimension reduction of adaptive control experiments based on partial least squares
regression analysis (PLS) of the normalized covariance matrix of the total data set. When applied to experimental
results obtained in our laboratory, it shows that only seven fundamental dimensions from an original 208-
dimension search space are needed to account for∼90% of the variance in the observed fitness of 11 700
laser-pulse shapes explored during the optimization experiment. Furthermore, the seven dimensions have a
remarkable regularity in their functional form. It is anticipated that this work will facilitate theoretical treatments
directly linking the optimal fields to control mechanisms, allow quantitative comparisons of independent
control results, and suggest new experimental methods for rapid adaptive searches.

The adaptive femtosecond control methodology first proposed
by Rabitz1 offers a powerful tool for chemical research by
providing a means of manipulating complex molecular systems
with light without specific prior knowledge of the Hamiltonian.2

By coupling a broad-band laser-pulse shaper with iterative
learning algorithms, researchers are able to search massive
experimentally derived parameter spaces to discover laser-pulse
shapes capable of inducing specific photochemical or photo-
physical outcomes. This has led to the discovery of control fields
that would have been difficult or impossible to otherwise predict,
including complex pulse shapes that achieve bond-selective
chemistry,3-8 that move energy in biological systems,9,10 that
enhance high-harmonic generation in gases,11,12and that selec-
tively excite different chromophores in solution.13-15 However,
understanding how to infer control mechanisms from the
adaptively discovered fields remains an outstanding question
that must be addressed if the technique is to become a general
tool for investigating chemical dynamics. As a step toward this
goal, we present a generally applicable method for the dimension
reduction of the variable space within these types of control
problems. We stress that the methodology does not presuppose
any specifics of the underlying control mechanism and that the
experimental results are analyzed without arbitrarily biasing the
search space. As a demonstration of this technique, we show
that we can extract seven fundamental dimensions from an
original 208 variable search space that account for∼90% of
the variance in the fitness of 11 700 pulse shapes explored in
our laboratory. Herein, fitness refers to the quality of any laser

pulse explored by the adaptive algorithm with respect to the
user-defined optimization goal. Only three dimensions are
needed to account for 82% of the variance. Furthermore, the
seven dimensions have remarkable regularity in their functional
form, which should facilitate future theoretical treatments linking
the optimal fields to control mechanisms.

In many adaptive control experiments to date, astronomically
large search spaces are made possible by manipulating the
frequency-dependent phase of broad-band laser pulses using
many (on the order of 100) independent phase parameters. In
some reports, the adaptively discovered fields reveal regular
structure such as evenly spaced pulse-like features.5,9 In these
cases, mechanistic insight has been gained using parametrization
techniques that recreate salient pulse characteristics or pump-
probe experiments that test the adaptively discovered features.
However, there is no guarantee that complex control fields will
have readily interpretable structure. Often, the massive parameter
space that facilitates control in the first place also serves to
obscure mechanistic insight because the heuristic optimization
algorithms do not distinguish between pulse features necessary
for control and those that contribute negligibly to fitness.16,17

In these cases, there heretofore exists no rational basis to
parametrize or reduce the search space (such as searching in
orders of a Taylor expansion of the chirp) from the discovered
solution. In fact, we would argue that an experimenter is apt to
further obfuscate the latent control mechanism by implementing
an arbitrary parametrization or search space reduction even if
control can be achieved.

Nonetheless, researchers must be able to understand pulse
shapes in the context of an intellectually tractable number of
variables if control mechanisms are to be investigated. In
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essence, adaptively shaped laser pulses must be distilled to their
essential structure. Much recent research has been directed
toward dimension reduction of adaptive control experiments.
Bartels et al. have analyzed pulse statistics to corroborate
predicted control mechanisms.12 Weinacht’s group has shown
that the dimensionality of the search space can be significantly
reduced through the appropriate selection of a basis set and that,
in principle, linear transformations of the search space can be
used for this purpose.17-19 Bucksbaum’s group has applied
multivariate statistical methods to their adaptive results to make
such transformations and conclude that diagonalization of the
covariance matrix is an appropriate means of extracting the
principal control directions of the system.20

Our analysis suggests that statistical methods can pay too
much attention to the mechanism of the search algorithm rather
than mechanisms of control. It is crucial to quantify the
correlation of phase-parameter variance with experimentally
measured pulse fitness. Furthermore, in creating new basis
functions, it is essential that discontinuities in phase functions
are properly accounted for prior to the statistical treatments.

The experimental setup we have used (see Supporting
Information) is similar to one previously described by Gerber’s
group.14 Briefly, broadband laser pulses (∼800 ( 17 nm) are
shaped using “phase functions” composed of 208 independent
variables across the laser-pulse spectrum. The number of pixels
is chosen by inspection to include greater than 95% of spectral
intensity as detected on an Ocean Optics SD2000 spectrometer.
An immense number of light fields is possible (>10400), each
with a different time ordering of its frequency components. The
output of the pulse shaping device is split into two pulse trains.
One impinges on a 298 K sample of [Ru(dpb)3](PF6)2 in
acetonitrile (where dpb) 4,4′-diphenyl-2,2′-bipyridine). The
linear absorption spectrum of this system has negligible absor-
bance at the wavelengths contained in the laser pulse, but
electronic excitation occurs if the molecule absorbs two or more
photons from the shaped field. The relative multiphoton
excitation efficiency is monitored with a 640( 5 nm spontane-
ous emission signal from the thermalized triplet metal-to-ligand
charge transfer state. The second pulse train is passed through
a thin BBO crystal to generate second harmonic (SHG) of the
fundamental. This signal reports the relative intensity of each
laser pulse tested by the adaptive algorithm. Gerber’s group has
shown that maximizing theratio of these two signals (emission/
SHG) removes the two-photon intensity dependence of either
separate physical process. This allows the adaptive algorithm
to take advantage of molecule-specific information to discover
optimal pulse shapes.14 For the data analyzed herein, the
algorithm was run for 195 generations with 60 laser pulses per
generation (11700 total pulses). The optimal pulses in this
experiment approximately doubled the emission/SHG ratio with
respect to randomly encoded pulse shapes. We have chosen this
experiment for the development and application of our statistical
methods because the optimal pulse shapes show complex time
and frequency-dependent structure as reported elsewhere.14

To begin deconstructing patterns that emerge in optimal pulse
shapes, we have developed a general analysis tool that is based
on partial least squares regression (PLS) of the normalized
covariance matrix.21,22 This is a soft-modeling technique com-
monly used in chemometrics to understand multiconstituent
spectra. Conceptually, the regression algorithm accomplishes
three tasks. First, the phase variables are fit to a minimum
dimensional hyperplane in the search space. The experimental
data points are then projected onto this plane to determine the
variation of fitness relative to position on the plane. Finally,

the plane is expressed with an orthogonal basis set such that
the first basis vector points along the direction of greatest fitness
variance on the hyperplane. The second basis vector points along
the direction of next greatest variance and so forth. These
orthogonal vectors are linear combinations of the original 208
phase variables. For further description and discussion, see the
Supporting Information.

We have applied our method to a data set consisting of 11 700
spectral phase functions explored in a single 195-generation
optimization experiment. It is possible to represent the full data
set as a plot of the measured molecular emission versus second
harmonic for each pulse (Figure 1). Because the algorithm is
trying to maximize the ratio of these two signals, the best pulses
are those that lie in the upper left of the graph, on or above the
dotted line. Randomly encoded phase functions that are used
to start the algorithm, as well as near bandwidth limited pulses
not shown here,14 lie on or near the dashed line with a ratio of
1 (arbitrary units).

The adaptive algorithm manipulates the phase modulo 2π and
the resultant phase functions for all but the simplest laser fields
can exhibit discontinuities between adjacent pixels. For modeling
purposes this is problematic because the relative phase, rather
than the absolute phase, determines pulse fitness. Thus, it is
essential that the functions be made continuous prior to PLS
analysis. We implement an algorithm that “unwraps” each
function such that there are no phase discontinuities between
adjacent pixels greater thanπ. We note in agreement with one
of our reviewers that unwrapping is only necessary if the phase
has been searched modulo 2π. Some pulse shaping techniques,
such as those that use acousto-optic modulators or deformable
mirrors, do not produce discontinuous phase functions. However,
in either case the PLS analysis can implemented. The normalized
covariance matrix can then be calculated and diagonalized to
reveal the fundamental directions along which phase functions
vary in the total data set. These directions are known as principal
components (PCs) and they are ranked by the percentage of
the total phase variance that they embody. White et al. have
argued that the few PCs of statistical importance (highest
percentage of the variance) reveal the fundamental degrees of
freedom in the control Hamiltonian.20 Although variance does
contain information about the fitness, their relationship is
necessarily obscured by the heuristic nature of the evolutionary
algorithm’s search mechanics.

Here we report that it is imperative to directly correlate phase
data with laser-pulse fitness. The PLS analysis regresses the
normalized covariance matrix of the 11 700 phase functions
against the variance of the fitness for the pulses. This reveals
the fundamental directions wherein changes to the phase
functions correlate most strongly to fitness. The extracted vectors

Figure 1. Emission versus SHG for all 11 700 laser pulses explored
during the optimization experiment.
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are quantified in terms of both the percentage variance in phase
and fitness. As shown in Table 1, seven orthogonal interpixel
phase relationships account for 89% of the observed fitness
variance. It is important to note that the third PC accounts for
11% of the fitness variance despite exhibiting negligible phase
variance. This would have been overlooked had we only
considered the diagonalization of the covariance matrix.

Each of these basis vectors can be plotted in terms of relative
phase versus pixel number. If the phase unwrapping procedure
is neglected prior to the PLS analysis, highly discontinuous
functions are discovered. For purposes of comparison, the
incorrect PC1 is shown here in Figure 2. When phase unwrap-
ping is employed prior to PLS analysis, the extracted basis
functions bear remarkable simplicity and qualitative similarity
to certain orthogonal functions of mathematical physics such
as particle-in-a-box wave functions. The first seven basis
functions are shown in Figure 3.

The small number of simple functions needed to account for
the majority of the fitness reveals that highly structured pulse
features are not necessary for increasing emission/SHG in this
experimental system. This is consistent with a control mecha-
nism that exploits broad features in the two-photon absorption
spectrum of the molecule, as suggested by the Gerber group14

and confirmed by the Joffre group for a related experiment using
the organic chromophore Coumarin 460.15 Most importantly,
the analysis reveals in a completely general and unbiased fashion
which and how many independent experimental “knobs” are
needed to manipulate control mechanisms unveiled by the larger
adaptive search. We are now conducting optimizations with far
fewer control variables consisting of the basis vectors revealed
by PLS analysis as well as actual particle-in-a-box wave
functions. Such adaptive searches are accomplished in a fraction
of the time necessary for a 208-parameter optimization. We are
also exploring how different linear combinations of these eight
basis functions manifest themselves in the optimal control fields.
Finally, we are applying these general analysis methods to new

control results discovered in our laboratory. This is bringing us
much closer to being able to read such distributions as a record
in time and frequency of control mechanisms uncovered by
adaptive experiments.
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